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BUILDING A NEXT-GENERATION 
TOOLBOX FOR AI-POWERED  
DRUG DISCOVERY

 AI-generated drugs are still over the horizon, but machine learning and deep learning are 

already creating opportunities to accelerate and improve the discovery process. 
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In late 2023, numerous media outlets touted landmark progress in bringing the 

first truly artificial intelligence–designed drug into clinical trials: researchers 

at Hong Kong–based Insilico Medicine had used their Pharma.AI workflow to 

dream up entirely new molecules and had developed a promising candidate 

for treating lung fibrosis.1,2 The molecule, INS018_055, succeeded in a Phase 1 

safety trial and is now undergoing efficacy testing in a Phase 2 study. If things 

go well, this drug would represent an important milestone in AI-facilitated  

drug discovery.

But at times, tremendous fanfare in this field has resulted in questionable 

claims about “first AI-generated” drugs.3,4 Some promising early contenders 

have already fallen by the wayside, including an eczema program shut down by 

BenevolentAI last spring after a disappointing trial.5 And some experts caution 

against overinflating the role of algorithms versus that of the scientists using 

them. “I think there have been AI contributions,” says Pat Walters, chief data 

officer at Relay Therapeutics. “But I don’t buy the claim that there’s just a purely 

AI-invented drug.”

https://insilico.com/platform
https://relaytx.com/our-team/pat-walters-ph-d/
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There’s no question that AI is now embedded in the drug discovery process at a 

growing number of companies, however. “For 70% of our small-molecule drug 

discovery projects, we apply AI methods,” says Ola Engkvist, head of molecular 

AI at AstraZeneca. As more drug assets are successfully developed with AI 

methods, this trend is poised to become the industry standard.  

Many AI-driven start-ups that initially focused on software have matured into 

full-service drug companies, with both their own internal discovery programs 

and partnerships with large pharmaceutical firms, says Ashwini Ghogare, head 

of AI and automation in drug discovery at MilliporeSigma. “Now we see billions 

of dollars that are being invested for these strategic partnerships.” Use cases for 

AI in drug discovery are still evolving, however, and AI-powered drug ideation 

must overcome many hurdles before it becomes commonplace and reliable. 

Here’s the latest on how AI supports drug discovery.

STREAMLINING SCREENING
Most AI methods are based on machine learning (ML), in which an algorithm is 

fed a selected cohort of training data to create models for the classification and 

interpretation of novel inputs. Conventional ML approaches such as support 

vector machines and random forest classifiers have been used for decades, but 

interest in a subset of ML methods known as deep learning (DL) has surged 

in the past decade. DL relies on sophisticated neural network computational 

architectures to extract richer insights from datasets. It powers many 

mainstream AI tools, including ChatGPT and the image-generating algorithm 

Midjourney. It’s not always the best choice for chemists, however. “If datasets 

are very small, classical ML methods are still very valuable and extremely hard 

to beat,” says Olexandr Isayev, a computational chemist at Carnegie Mellon 

University. But he adds that DL methods are highly scalable and demonstrate 

advantages over ML when they are unleashed on training datasets with many 

thousands or millions of data points.

Such data-crunching capabilities could be especially powerful at the earliest 

stages of drug discovery, when the goal is to pluck candidates with promising 

pharmacological properties out of vast libraries of chemical compounds. This 

can be done experimentally, with automated high-throughput screening of 

many compounds against a given protein target in cultured cells or other 

assays. Computational virtual screening methods can also narrow the field 

before wet-lab work begins, but it has become burdensome as chemical libraries 

grow increasingly larger. Consider the Enamine REAL collection—a database 

of more than 6 billion compounds, any of which can be ordered on demand.6 

Brute-force screening at this scale is impractical, and some virtual libraries 

are even larger. “MilliporeSigma has one of the largest chemical spaces, which 

is 1020 compounds,” Ghogare says. “In order to search that chemical space, it 

used to take us a minimum of a month’s time with the compute that we had 

at hand.” Computational and generative methods can help sift these daunting 

chemical collections to a manageable scale. 

https://www.astrazeneca.com/our-company/our-people/ola-engkvist.html
https://www.linkedin.com/in/ashwinighogare/
https://www.cmu.edu/chemistry/people/faculty/isayev.html
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One approach to virtual screening entails ligand-based screening, which 

assesses the suitability of chemical library candidates according to their 

similarity or difference to other molecules in terms of physicochemical 

properties. Pedro Ballester, a data scientist at Imperial College London, says 

ML-based methods for assessing quantitative structure-activity relationships 

(QSAR) have been around for more than 30 years. In that time, the field has got 

a major boost from the rapid growth of public chemistry data resources like 

ChEMBL and PubChem, which have enabled the use of more powerful, DL-based 

approaches. “[Deep learning] is extremely simple to use but also extremely 

simple to misuse,” Ballester says. Researchers must be careful in how they train 

their models with such heterogeneous data repositories, he adds. 

A complementary structure-based virtual screening approach focuses on 

predicting how well different library molecules can physically dock with a target 

protein of interest. The method has already benefited directly from the rise of DL, 

which has enabled the development of structural biology tools like AlphaFold2. 

This software has predicted structures for millions of proteins that have yet to be 

assessed via experimental techniques like X-ray crystallography, with confidence 

metrics that depict how robust those predictions are. Such predictions can 

complement experimental structural data and help researchers find and map 

promising binding sites for docking. “I think there is a lot of utility,” Walters says, 

“but it’s not like it’s going to put structural biologists out of business.”

Further advances in AI-assisted drug development will require more high-quality data and 

robust benchmarking methods to assess algorithmic performance.  

Credit: KTSDESIGN/SciencePhotoLibrary

https://ballestergroup.github.io
https://alphafold.ebi.ac.uk
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The effectiveness of docking experiments depends heavily on the choice 

of scoring function—a mathematical procedure for computing whether a 

compound could be an effective drug candidate based on its 3D interactions 

with the binding pocket. In principle, ML-derived scoring functions can handily 

outperform classical scoring functions, such as those based on force fields, 

in predicting the binding affinity of protein-ligand complexes based on their 

3D structures. But Ballester points out that it is critically important to select 

an appropriate scoring function for a given target,7 in the context of virtual 

screening, in which the vast majority of  of the billions of library compounds will 

be nontarget binders. In the absence of sufficient training data for a tailored 

scoring function, generic scoring functions can deliver solid results. Ballester 

also sees exciting opportunities for transfer learning approaches, which can 

extrapolate likely target-binding behaviors according to insights gleaned from 

experiments with similar drug or target candidates. 

THE NEXT GENERATION OF AI
Other emerging algorithmic approaches could further accelerate drug 

development. For example, many groups are now exploring active learning, 

which couples the analytical throughput of ML or DL methods with the 

scientific rigor of physics-based modeling methods like free energy perturbation 

calculations, a well-established molecular dynamics technique for assessing 

ligand-target binding. “Free energy perturbation is a relatively slow technique—

it takes between 4 and 8 hours to calculate one molecule,” Walters says. This 

method would scale poorly to libraries with thousands of molecules. Teams can 

dramatically reduce computational requirements by performing iterative cycles 

of FEP and ML, however. In a 2022 paper by scientists from Relay Therapeutics 

and Google, the authors identified more than half of the 100 highest-scoring 

molecules by evaluating only 3% of a 10,000-molecule library.8 “There’s a lot 

of interesting work going on now to integrate physics-based methods and 

machine learning, and I think the power really comes in that combination,” 

Walters says.

In parallel, generative AI is giving chemists more shots on goal than would 

otherwise be possible even with today’s vast chemical libraries. These models 

use DL to design new molecules according to patterns identified in real-world 

compounds and on other external parameters, like chemical composition 

or solubility, supplied by the algorithm’s user. The AstraZeneca team works 

extensively with generative AI and has developed an extensive toolbox for this 

purpose.9,10 Engkvist typically applies it slightly later in the process, after initial 

hits have been identified via experimental or virtual screening. “We iteratively 

optimize our hits and increase the chance of evolving these compounds into 

clinical trial candidates,” he says. The group combines generative AI methods 

with docking as a scoring function, and then in postprocessing, uses more 

expensive methods, like free energy perturbation methods, for a detailed 

evaluation of the interaction binding strength, he adds. 
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This technology is far from mature, however. Isayev at Carnegie Mellon warns 

that expert oversight is essential and that many algorithms still spit out 

molecules that are unrealistic or impractical to produce. “If I would take some of 

those molecules to my experimental colleagues, they would stop talking to me 

because of how atrocious they are,” he says. It helps to impose rules that limit 

the algorithm’s “imagination.” 

MilliporeSigma has developed a new, AI-powered platform for drug discovery. 

The software, called AIDDISON™, integrates generative de novo design, 

molecular docking, and synthetic accessibility scoring.  Ghogare says this 

manufacturability in drug design is steered by retrosynthesis rules codified 

in the company’s SYNTHIA™ retrosynthetic-planning software. “SYNTHIA™ 

encompasses more than 100,000 retrosynthesis rules, which took over 15 years 

to build,” she says. These rules, which are manually coded, can be used inside 

ML models that strongly favor the generation of bona fide drug candidates that 

can be synthesized and also meet criteria such as affordability or compatibility 

with green synthetic methods.

AIDDISON™ takes a holistic drug design approach to accelerate hit-to-lead 

by incorporating predictive ADMET (absorption, distribution, metabolism, 

excretion, and toxicity) data at early stages of the design process. Traditionally, 

this has been a challenge due to the limited availability of large, well-annotated 

preclinical and clinical datasets with which to train robust ML models. 

MilliporeSigma has an advantage with access to 30 years of experimentally 

validated preclinical data from its parent company, Merck KGaA, Darmstadt, 

Germany. The company also benefits from a partnership with Excelra, the 

creator of GOSTAR, a repository of curated SAR and ADMET data for nearly 

10 million compounds. Ghogare believes that models derived from these 

experimentally validated data could save researchers a great deal of trouble by 

increasing the likelihood that hits predicted to show excellent target binding 

and potency will prove suitable for use in patients. That raises the probability of 

success for each shot on goal, she says.

This ‘glowing twin’ model produced by AIDDISON™ shows the atomic-level contribution 

to the ADMET property of CACO-2 permeability. The atoms highlighted in green show 

positive contribution while the atoms in red show negative contribution and make CACO-2 

permeability weaker. 

Credit: MilliporeSigma

https://www.sigmaaldrich.com/US/en/services/software-and-digital-platforms/aiddison-ai-powered-drug-discovery
https://www.sigmaaldrich.com/US/en/services/software-and-digital-platforms/synthia-retrosynthesis-software
https://www.excelra.com/databases/gostar/
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BUILDING A BETTER ECOSYSTEM
As AI becomes more fundamental to the drug discovery process, however,  

the limitations of the current toolbox are also coming into stark relief.

Many experts cite the need for better benchmarking of performance and 

reliability for this generation of ML and DL methods, particularly in emerging 

domains like generative chemistry. “Our benchmarks cannot anticipate how 

well a method is going to work in a particular target, and there’s a lot to be 

done,” Ballester says. Without these capabilities, scientists cannot objectively 

weigh the strengths and weaknesses of different algorithms or workflows. 

But promising steps have been taken. Those include the Critical Assessment of 

Computational Hit-finding Experiments (CACHE) challenges, in which teams 

test their pipelines in real-world demonstrations that span the process from hit 

identification to lead optimization. “I think this is going to be the best kind of 

validation, not just a synthetic benchmark,” says Isayev, whose group recently 

claimed first place in the intial CACHE challenge.

More and higher-quality data will also be essential, particularly for DL 

algorithms. Some of the richest data collections are siloed in the servers of 

individual companies. This is understandable, given that these proprietary 

data are often more important than the algorithms themselves in determining 

success or failure of an AI-driven experiment. But it leads to replication of effort 

and slower progress in the field.  This issue remains difficult to resolve. In a 

recently concluded European Union initiative called Machine Learning Ledger 

Orchestration for Drug Discovery (MELLODDY), 10 pharmaceutical companies 

fed internal data related to drug discovery into a federated learning framework 

that let participants collectively train an ML model while protecting proprietary 

data. The MELLODDY consortium was able to apply this approach successfully, 

but not all participants benefited equally: larger companies generally saw small 

gains relative to those with limited internal data.11 Engkvist, who coordinated 

AstraZeneca’s involvement in MELLODDY, is positive about the experience. “I 

think we can see a way forward with privacy-preserving machine learning in 

the future,” he says. But Walters is skeptical and believes that these efforts 

will remain hamstrung by the conflicting goals of openness and intellectual 

property protection.

There are also major limitations to publicly available repositories, and much of 

the data used to train algorithms about SAR and other chemical properties may 

be inconsistently or incorrectly labeled or obtained from highly heterogeneous 

sources. This latter aspect could even be a matter of subtle differences in 

experimental processes between labs. “There is substantial error there, and 

when you put that into the model without knowing it, you can fool yourself into 

believing that your model generalizes,” Ballester says. 

Advances in automated experimentation could make a huge difference 

by enabling more consistent and reproducible experimental design while 

collecting the resulting data in appropriately structured, ML-friendly formats. By 

incorporating these systems into active learning processes, we could ultimately 

https://cache-challenge.org/
https://cache-challenge.org/
https://www.melloddy.eu
https://www.melloddy.eu
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envision closed-loop robotic laboratories where AI algorithms use incoming 

data to design and execute future experiments. “That’s my dream, and probably 

I can retire if the system runs,” says Isayev, whose team developed and operates 

the fully automated Carnegie Mellon University Cloud Lab. But he acknowledges 

that the dream will require considerable evolution of software, hardware, and 

human expertise to become a reality. “There are a lot of things that need to be 

ironed out before we can replace chemists,” he jokes.
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